
To Promote the Progress of Science and Useful Arts

The Director
of the United States Patent and Trademark Office has received

an application for a patent for a new and useful invention. The title
and description of the invention are enclosed. The requirements
of law have been complied with, and it has been determined that

a patent on the invention shall be granted under the law.

Therefore, this United States

grants to the person(s) having title to this patent the right to exclude others from making,
using, offering for sale, or selling the invention throughout the United States of America or
importing the invention into the United States of America, and if the invention is a process,
of the right to exclude others from using, offering for sale or selling throughout the United
States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2)
or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the
Maintenance Fee Notice on the inside of the cover.

Director of the United States Patent and Trademark Office

Maintenance Fee Notice
If the application for this patent was filed on or after December 12, 1980, maintenance fees
are due three years and six months, seven years and six months, and eleven years and six
months after the date of this grant, or within a grace period of six months thereafter upon
payment of a surcharge as provided by law. The amount, number and timing of the mainte-
nance fees required may be changed by law or regulation. Unless payment of the applicable
maintenance fee is received in the United States Patent and Trademark Office on or before
the date the fee is due or within a grace period of six months thereafter, the patent will expire
as of the end of such grace period.

Patent Term Notice
If the application for this patent was filed on or after June 8, 1995, the term of this patent
begins on the date on which this patent issues and ends twenty years from the filing date of
the application or, if the application contains a specific reference to an earlier filed applica-
tion or applications under 35 U.S.C. 120, 121, 365(c), or 386(c), twenty years from the filing date
of the earliest such application (“the twenty-year term”), subject to the payment of mainte-
nance fees as provided by 35 U.S.C. 41(b), and any extension as provided by 35 U.S.C. 154(b) or
156 or any disclaimer under 35 U.S.C. 253.

If this application was filed prior to June 8, 1995, the term of this patent begins on the date
on which this patent issues and ends on the later of seventeen years from the date of the
grant of this patent or the twenty-year term set forth above for patents resulting from appli-
cations filed on or after June 8, 1995, subject to the payment of maintenance fees as provided
by 35 U.S.C. 41(b) and any extension as provided by 35 U.S.C. 156 or any disclaimer under
35 U.S.C. 253.

Form PTO-377C (Rev 09/17)

(54) SQUARE ORIENTATION FOR
PRESENTATION OF CONTENT
STEREOSCOPICALLY

(71) Applicant: Lenovo (Singapore) Pte. Ltd.,
Morrisville, NC (US)

(72) Inventors: Kuldeep Singh, Morrisville, NC (US);
Poorna Prasad Vishwanath,
Morrisville, NC (US); Raju
Kandaswamy, Morrisville, NC (US)

(73) Assignee: Lenovo (Singapore) Pte. Ltd.,
Singapore (SG)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 125 days.

(21) Appl. No.: 17/812,987

(22) Filed: Jul. 15, 2022

(65) Prior Publication Data

US 2024/0022703 A1 Jan. 18, 2024

(51) Int. Cl.
H04N 13/366 (2018.01)
G06F 3/01 (2006.01)
G06F 3/04815 (2022.01)
G06F 9/451 (2018.01)
G06T 11/00 (2006.01)
G06T 15/00 (2011.01)
H04M 1/72409 (2021.01)
H04M 1/72412 (2021.01)
H04M 1/72454 (2021.01)
H04N 13/279 (2018.01)
H04N 13/332 (2018.01)

(52) U.S. Cl.
CPC H04N 13/366 (2018.05); H04M 1/72412

(2021.01); H04N 13/279 (2018.05); H04N

13/332 (2018.05); G06F 3/011 (2013.01);

G06F 3/04815 (2013.01); G06F 9/451

(2018.02); G06T 11/001 (2013.01); G06T

15/00 (2013.01); H04M 1/724097 (2022.02);
H04M 1/72454 (2021.01)

(58) Field of Classification Search
CPC .. H04N 13/366; H04N 13/279; H04N 13/332;

H04M 1/72412
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2018/0308288 A1 * 10/2018 Harscoet G06F 3/04815

OTHER PUBLICATIONS

Zielinski , Evaluating the Effects of Image Persistence on Dynamic

Target Acquisition in Low Frame Rate Virtual Environments, 2016,

IEEE (Year: 2016).*

(Continued)

Primary Examiner — YuJang Tswei

(74) Attorney, Agent, or Firm — John M. Rogitz; John L.
Rogitz

(57) ABSTRACT

In one aspect, at least a first device includes at least one
processor and storage accessible to the at least one proces-
sor. The storage includes instructions executable by the at
least one processor to execute a first application (app) at a
first device, where the first app is configured for presenting
content stereoscopically in three dimensional (3D) space
using a headset. The instructions are also executable to use
the first app to request, from a second app, a virtual display
in a square orientation. The instructions are then executable
to receive, from the second app, the virtual display in the
square orientation and to use the first app to present, in 3D
space on a display of the headset, the virtual display in the
square orientation.

20 Claims, 7 Drawing Sheets

US012081729B2

(12) United States Patent (10) Patent No.: US 12,081,729 B2
Singh et al. (45) Date of Patent: Sep. 3, 2024

(56) References Cited

OTHER PUBLICATIONS

Analysis of adaptive streaming technologies for segmented multi-

media transport of high-resolution videos for 360Âº playback on

multiple devices (Year: 2019).*

Naz et al, Emotional Qualities of VR Space—May 2022, IEEE
(Year: 2022).*

* cited by examiner

US 12,081,729 B2
Page 2

U.S. Patent Sep. 3, 2024 Sheet 1 of 7 US 12,081,729 B2

U.S. Patent Sep. 3, 2024 Sheet 2 of 7 US 12,081,729 B2

U.S. Patent Sep. 3, 2024 Sheet 3 of 7 US 12,081,729 B2

U.S. Patent Sep. 3, 2024 Sheet 4 of 7 US 12,081,729 B2

U.S. Patent Sep. 3, 2024 Sheet 5 of 7 US 12,081,729 B2

U.S. Patent Sep. 3, 2024 Sheet 6 of 7 US 12,081,729 B2

U.S. Patent Sep. 3, 2024 Sheet 7 of 7 US 12,081,729 B2

SQUARE ORIENTATION FOR

PRESENTATION OF CONTENT

STEREOSCOPICALLY

FIELD

The disclosure below relates to technically inventive,

non-routine solutions that are necessarily rooted in computer

technology and that produce concrete technical improve-

ments. In particular, the disclosure below relates to using a

square orientation to present content stereoscopically.

BACKGROUND

As recognized herein, when a mobile device detects a

change in physical orientation of the mobile device, it might

switch from presenting two dimensional (2D) content in

landscape orientation to presenting the 2D content in portrait

orientation (and vice versa). Or the app presenting the 2D

content might only support portrait orientation.

As also recognized herein, such a mobile device might

also be used to present augmented reality (AR) content at a

headset in landscape orientation, where the AR content is

derived from the 2D content. The disclosure below therefore

recognizes that should a change in the mobile device’s

physical orientation trigger a switch in the orientation of the

2D content to portrait orientation at runtime (or if the 2D app

only presents content in portrait orientation), when the 2D

content is translated into three dimensional (3D) space for

presentation as part of the AR content, the corresponding 3D

content will look small, distorted, and/or otherwise unsatis-

factory to the user in portrait orientation. This can be due to

the headset execution environment often being fixed to, or at

the very least more suitable for, landscape orientation even

though the underlying 2D content itself is currently format-

ted for portrait orientation.

Additionally, were the user to change the mobile device’s

orientation back and forth, the serial switching between

landscape and portrait orientations can cause a jittery effect

when viewing the corresponding stereoscopic content at the

headset, further undermining the AR simulation, making the

content difficult to follow, and making it difficult for the user

to accurately provide user input.

There are currently no adequate solutions to the foregoing

computer-related, technological problems.

SUMMARY

Accordingly, in one aspect at least a first device includes
at least one processor and storage accessible to the at least
one processor. The storage includes instructions executable
by the at least one processor to execute a first application
(app) at the first device, where the first app is configured for
interfacing presentation of content between two dimensional
(2D) space and three dimensional (3D) space. The instruc-
tions are then executable to request, from a second app, a
virtual display in a square orientation. Thereafter, the
instructions are executable to receive, via the first app, the
virtual display in the square orientation and to use the first
app to present, in 3D space on a display of a headset, the
virtual display in the square orientation.

In various example embodiments, the second app may be
a guest operating system. Additionally or alternatively, the
second app may be a 2D app that accesses the Internet to
present visual content.

Additionally, in various example implementations the
square orientation may be established by a 1920×1920
resolution.

Still further, if desired the first app itself may issue the
request. The first app may do so based on the first app
accessing configuration data indicating that content from a
third app is approved for presentation in square orientation.
The third app may be the same as or different from the
second app. Additionally, if desired the configuration data
may form part of a plugin for the first app.

Also in various example embodiments, the instructions
may be executable to receive user input to present content
from a third app in landscape orientation and, based on the
user input, request, from the second app, a virtual display in
a landscape orientation. The instructions may then be
executable to receive, via the first app, the virtual display in
the landscape orientation and then to use the first app to
present, in 3D space on the display of the headset, the virtual
display in the landscape orientation. In some specific
examples, the user input may include input to present
content from the third app full-screen.

Also in certain examples, the at least first device may
include the headset. Additionally or alternatively, the at least
first device may include a mobile device that executes the
first and second apps, where the mobile device may be
different from the headset.

Further note that in example implementations, the first
app may present the virtual display stereoscopically.

In another aspect, a method includes executing a first
application (app) at a first device, where the first app is
configured for presenting content stereoscopically in three
dimensional (3D) space using a headset. The method also
includes using the first app to request, from a second app, a
virtual display in a square orientation. The method then
includes receiving, at the first app and from the second app,
the virtual display in the square orientation. Thereafter, the
method includes using the first app to present, in 3D space
on a display of the headset, the virtual display in the square
orientation.

In certain examples, the second app may be a guest
operating system of a mobile device. Also in certain
examples, the square orientation may be established by a
1920×1920 resolution.

Still further, if desired the method may include using the
first app itself to issue the request.

In still another aspect, at least one computer readable
storage medium (CRSM) that is not a transitory signal
includes instructions executable by at least one processor to
execute a first application (app) at a first device. The first app
is configured for presenting content stereoscopically in three
dimensional (3D) space using a headset. The instructions are
also executable to use the first app to request, from a second
app, a virtual display in a square orientation. The instruc-
tions are then executable to receive, from the second app, the
virtual display in the square orientation and to use the first
app to present, in 3D space on a display of the headset, the
virtual display in the square orientation.

In certain specific examples, the square orientation may
be established by a 1920×1920 resolution, such as a 1920×
1920 resolution at 520 dots per inch (dpi).

The details of present principles, both as to their structure
and operation, can best be understood in reference to the
accompanying drawings, in which like reference numerals
refer to like parts, and in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example system consistent
with present principles;

US 12,081,729 B2

1 2

5

10

15

20

25

30

35

40

45

50

55

60

65

FIG. 2 is a block diagram of an example network of

devices consistent with present principles;

FIG. 3 illustrates an example headset that may be used to
present an AR, MR, or VR presentation consistent with
present principles;

FIG. 4 is a schematic of example hardware and software
architecture for content rendering consistent with present
principles;

FIG. 5 shows an example graphical user interface (GUI)
with content being presented in square orientation consistent
with present principles;

FIG. 6 shows an example GUI with content being pre-
sented in landscape orientation consistent with present prin-
ciples;

FIG. 7 shows an example GUI prompting an end-user to
choose whether to switch from square orientation to land-
scape orientation consistent with present principles;

FIG. 8 shows an example GUI prompting an end-user to
choose whether to present potentially stretched content in
square orientation consistent with present principles; and

FIG. 9 illustrates example overall logic in example flow
chart format that may be executed by one or more devices
such as a mobile device consistent with present principles.

DETAILED DESCRIPTION

Among other things, the detailed description below rec-
ognizes that it is desirable for 2D mobile apps (designed for
2D space rendered on a flat screen display as may be built
using a mobile device SDK such as Android’s SDK) to be
run in a 3D virtual environment in cross-compatible fashion.
The 2D app might be Google’s Chrome or Microsoft’s
Teams, for example. The detailed description below further
recognizes that it is desirable to not require 2D app pro-
grammers to change the functioning of the 2D app itself as
this is technologically complex if even possible given the
numerous different types of 3D SDKs used in different
headsets as the 3D SDKs are often manufacturer-specific.
Likewise, the detailed description below recognizes that it is
desirable to not require the 3D SDK programmers to change
the functioning of the 3D SDK itself as this too is techno-
logically complex and inhibiting.

App Space is therefore discussed below as an example of
an app that may be used to make immersive 3D interactions
possible for 2D apps. App Space may therefore be a mobile-
based app and user interface that renders the 2D apps in a
spatial environment and takes care of converting coordinates
for the spatial coordinate system to coordinates for the 2D
coordinate system in runtime. An app repositioning system
is also disclosed as part of App Space to place the apps in
three-dimensional spatial environment. Converted interac-
tions can be extended to all the 3D interactions provided by
the underlying SDK for the headset, such as raycast, scroll,
swipe, long-press, double tap, gesture and voice.

Thus, in one example App Space may first render the 2D
app(s) in a 3D spatial environment so that the rendered apps
appear floating in front of the user, e.g., in square orientation
as set forth below. Then, when the user performs an inter-
action using 3D spatial methods, App Space converts the 3D
interaction method and the 3D spatial coordinates at which
the interaction occurred to a 2D coordinate system and
interaction method recognizable by the 2D mobile app.

Accordingly, App Space may intercept the 3D AR coor-
dinates from a 3D cursor and convert them to 2D coordi-
nates, and covert all AR interactions such as AR clicks, AR
scrolls, and AR text input to 2D app interactions such as
“phone touches”/keyboard events. This architecture of App

Space may therefore be flexible and leverage the capability
of the headset’s underlying 3D SDK, native APIs and 3D
engine, making App Space’s architecture open for many
different platforms. In some specific examples, App Space
may even be established by a 3D Container App for 2D/3D
conversion, the underlying native 3D SDK of the headset
itself for stereoscopic rendering and identifying/processing
3D user inputs (e.g., Lenovo’s A3 Home and/or Unity), and
an App Space Service. The components of coordinate con-
version, square orientation, and interactions may work for
other platforms too (e.g., not just Android-based mobile
devices but also Mac and Linux-based devices using appro-
priate programming code for those other platforms).

It may therefore be appreciated that a 3D version of a 2D
app need not exist for 3D rendering, and that nothing in the
underlying 2D app itself need be customized either. Instead,
the 2D app/content may be rendered in a 3D container, and
the 2D app may not even know that it is being rendered in
3D space in square orientation. Rather, the 2D app continues
to assume it is operating per 2D pixel coordinates, possibly
in portrait orientation.

Interactions in 3D using App Space may be done per the
following examples:

As one example, a 3D pointer, such as a cursor located in
the center of the user’s field of view (FOV) like a 3D Gaze
pointer or a Raycast emanating from an attached device
(e.g., phone), may be used and serve as a 3DoF controller.

Other selection methods may include a touchpad on a
phone/mobile screen that accepts tap and swipe inputs (e.g.,
provided by a 2D companion app), a hardware button
located on the attached compute/mobile device (e.g., phone,
compute pack, etc.), hand gestures, and voice commands.

Keyboard key presses may also be used, such as from
Android’s native on-screen keyboard or from an AR key-
board.

When an interaction event occurs, App Space may do the
following in various examples:

First, convert the coordinates of the 3D pointer (cursor or
raycast) to corresponding screen coordinates.

Convert the 3D selection method (tap, scroll, etc.) to one
understandable by the 2D app.

Inject the respective interaction event to the underlying
2D app.

In the case of key press, these events may be received
either via native on-screen keyboard or via AR keyboard and
may be injected to the currently-selected text input field of
the 2D app’s virtual display.

Additionally, in various examples, this may be done while
the content is presented at the headset in square orientation
as provided in a virtual display by the mobile device’s guest
operating system or other app executing at the mobile
device. Thus, square orientation can run in App Space since
the headset content presentation orientation does not change
with changes in headset/handset orientation to thus run the
2D app in 3D space without losing image fidelity. Thus,
some or all windows from various 2D apps can be presented
in 3D space with proper fidelity via square orientation,
notwithstanding any changes in mobile device orientation
that would otherwise trigger changes in content orientation
at the headset.

Thus, in one example embodiment, square orientation
may be handled at the operating system level or application
layer. AppSpace may implement square orientation for all
the phone 2D apps, and it may run all the phone 2D apps in
1920×1920 resolution in the AR Glass/headset. So even if
the mobile device/phone orientation changes, this will not
impact the user experience in the AR glass/3D environment.

US 12,081,729 B2

3 4

5

10

15

20

25

30

35

40

45

50

55

60

65

Also in certain example embodiments, since some mobile

2D applications are designed and developed for a specific

orientation (landscape), in such cases, a provision may be

used to specify orientation for those particular apps since

they can run well in landscape orientation and the orienta-

tion will not change at run time. Thus, those specified apps

can be run in landscape orientation, with a default orienta-

tion of square orientation otherwise being used. AppSpace

may thus convert 3D coordinates to 2D screen coordinates

so that it can covert AR interactions to touch screen inter-

actions. The orientation plays a role in calculation of the

offset for coordinate conversation and hence default square

orientation or constant landscape orientation helps improve

and streamline the accurate processing of the coordinate

conversion.

As for the coordinate conversion itself, note that App

Space may intercept the 3D spatial coordinates (e.g., from

the headset’s manufacturer-provided SDK) and convert

them to 2D coordinates. Also note here that App Space may
not just convert 3D coordinates to 2D coordinates to provide
to the 2D app running on the mobile device but may also
convert 2D coordinates from the 2D app itself into 3D
coordinates for passing back to the headset’s 3D SDK for 3D
renderings.

Before describing the coordinate calculations in detail,
also note more generally that for the virtual display 2D
source coordinate system, Android images may be formed
by pixels and represented in the pixel coordinate system. As
for the 3D spatial coordinate system, 3D textures may be
bitmap images that have different origin and axis arrange-
ments. Thus, in order to perform clicks or selections on the
2D app at the correct places (e.g., represent 3D eye gaze
select actions as 2D touch events to the 2D app), a physics
raycasting may be done on the 3D texture to obtain the 3D
coordinates that the user is looking at. Then, with the mobile
device knowing the 3D coordinates, a coordinate conversion

may be performed from 3D texture space into 2D pixel space
using the following functions:

Pixel X=F(Texture X), where F=(0.5+Texture X)*W

Pixel Y=F(Texture Y), where F=(0.5−Texture Y)*H

For example, (−0.3,0.2) in texture space would translate
to (216, 576) as calculated below, given that width=1080
and height=1920:

Pixel X=(0.5+(−0.3))*1080=216

Pixel Y=(0.5−(0.2))*1920=576

Also note that the reverse calculation of (216,576) in 2D
pixel space may translate into (−0.3,0.2) in texture space as
given by the following functions:

Texture X=F(Pixel X), where F=(Pixel X/W)−0.5

Texture Y=F(Pixel Y), where F=0.5−(Pixel Y/H)

With the coordinate conversions themselves being set
forth, immersive interactions for which the conversions may
be used will now be discussed.

Interactions in 3D space (that may be translated to 2D
interactions using App Space) may occur using any number
of different 3D input modalities, including but not limited to
gaze pointer, raycast, hand/arm gestures, and voice input.
These interactions and input modalities may be supported
for any 3D app using the headset manufacturer’s SDK (e.g.,
the ThinkReality SDK) and/or App Space itself. Events may
thus be injected via Virtual Display APIs to the underlying
2D app. Below are descriptions of how different interactions
may be performed in App Space or whatever 3D to 2D
conversion app is being used.

For click/select interactions, App Space may inject a
finger touch event at pixel coordinates converted from the
cursor pointer location in Unity when a gaze select event or
companion app tap event or other event occurs. The follow-
ing is Android code for the injection:

public void click(int displayID, final int x, final int y) {
long 11owntime = SystemClock.uptimeMillis();

//These injectMotionEvents is to perform Tap

injectMotionEvent(displayID, MotionEvent.ACTION—DOWN, 11 owntime,

11owntime, x, y);

long eventTime = SystemClock.uptimeMillis();

injectMotionEvent(displayID, MotionEvent.ACTION—UP, 11 owntime,

eventTime, x,y);

}

- For longpress interactions the long press may be sup-
ported by long-pressing of a button on the headset (e.g., the
Lenovo A3 glass Center Key button) for a threshold amount
of time such as two seconds, or a longpress on the compan-
ion mobile app/display/trackpad. App Space may then inject
finger touch events (ACTION_DOWN using finger, hold it
down and then after a delay lifting finger using
ACTION_UP) according to the following Android code:

public void longPress(int displayID, final int x, final int y) {
long 12owntime = SystemClock.uptimeMillis();

injectMotionEvent(displayID, MotionEvent.ACTION—DOWN, 12 owntime,

12owntime, x, y);

Thread.sleep(ViewConfiguration.getLongPressTimeout() +
LONG—PRESS—TIMEOUT—BUFFER);

12owntime = SystemClock.uptimeMillis();

long eventTime = SystemClock.uptimeMillis();

injectMotionEvent(displayID, MotionEvent.ACTION—UP, 12 owntime,

eventTime, x, y);

US 12,081,729 B2

5 6

5

10

15

20

25

30

35

50

-continued

}
For back button interaction, back functionality may be supported in an AR user

interface (UI) at the headset (e.g. Lenovo A3 using App Space) as well from the 2D

companion app/mobile device itself. App Space may thus inject a keyboard event with

KEYCODE—BACK into the 2D app as follows:

public void goBack(int displayID) {
serviceConnection.injectKeyEvent(new KeyEvent(ACTION—DOWN,

KEYCODE—BACK), displayID);

serviceConnection.injectKeyEvent(new KeyEvent(ACTION—UP,

KEYCODE—BACK), displayID);

}

Note that similar programming language and a corre-
sponding keycode may be used for a “close” command to
close a window or other graphical object.

For scroll interactions, scrolling may be supported in an
AR UI at the headset (e.g., Lenovo A3 using App Space) by
injecting mouse scroll events (ACTION_SCROLL for
TOOL_TYPE_MOUSE). Thus, AR UI scrolls via Scroll
Up/Down buttons may be performed as a fixed-step scroll.
Scrolling from the 2D companion app trackpad or touch-
enabled display (e.g., up/down/left/right scroll gestures)
may also be supported as continuous scrolls and App Space
may thus inject scroll events based on the velocity and
distance covered on trackpad.

For double tap/double-click interactions, double taps on
the 2D companion app/mobile device display may also be
supported similar to the click/select interactions set forth
above but to establish a 2D double tap.

Turning now to text input modalities for conversion to 2D
coordinates for passing of text input to the 2D app on the
mobile device, the initial text input may be performed via an
on screen 3D keyboard in AR/VR as presented at the
headset, or via a keyboard as presented on the display of the

mobile device. If the input is provided to the native 3D
keyboard or to the mobile device keyboard, the key input for
whatever key is selected may be passed to the 2D app. For
input to a keyboard from a 2D app executing at the mobile
device (or from the mobile device itself) but as presented in
3D virtual space on the headset display, App Space may
intercept all the key events and inject to the focused Virtual
Display using Android’s virtual display APIs according to
the coordinate conversions discussed above (e.g., based on
the 3D coordinates of a gaze pointer or raycast being used
for key selection).

Still in terms of different 3D user interactions that may be
injected into a 2D app as a 2D action, the following table
further illustrates. This table may be thought of as a key map
indicating how various user interactions are converted to
Android terms for injection into an Android-based 2D app
even with square mode enabled. Thus, the table below sets
forth various events and their corresponding Android map-
ping. The Android Key codes may be provided through the
Android SDK. Thus, the appropriate events may be gener-
ated programmatically for each type of user interaction
indicated in the event column as follows:

Event Android Key Code Comments

Click MotionEvent.ACTION—DOWN Two motion events are

MotionEvent.ACTION—UP programmatically generated and

passed on, first event

ACTION—DOWN followed by

ACTION—UP

Hover MotionEvent.ACTION—HOVER—MOVE Whenever gaze movement is

detected over the AppSpace

canvas an

ACTION—HOVER—MOVE event

is programmatically generated

and fired

Keyboard KeyEvent.ACTION—DOWN Whenever a key is pressed in AR

KeyEvent.ACTION—UP Keyboard, two key events are

generated and fired

programmatically,

ACTION—DOWN followed by

ACTION—UP. Both events will

also have the same key code of

the key being pressed. For

example, for the enter key press,

“KeyEvent.KEYCODE—ENTER”

will be present in both

ACTION—DOWN and

ACTION—UP

Long MotionEvent.ACTION—DOWN Similar to click, but in between

Click Thread.Sleep(200) ACTION—DOWN and

MotionEvent.ACTION—UP ACTION—UP, a programmatical

delay (sleep) of 200 ms is

introduced to simulate interval

Back KeyEvent.ACTION—DOWN Similar to keyboard events, but

KeyEvent.ACTION—UP the generated event will have the

key code as

KeyEvent.KEYCODE—BACK

US 12,081,729 B2

7 8

15

20

25

30

-continued

Event Android Key Code Comments

Horizontal MotionEvent.AXIS—HSCROLL First AXIS—HSCROLL will be

Scroll MotionEvent.ACTION—SCROLL called to set the amount of scroll

followed by the

ACTION—SCROLL

programmatically

Vertical MotionEvent.AXIS—VSCROLL First AXIS—VSCROLL will be

Scroll MotionEvent.ACTION—SCROLL called to set the amount of scroll

followed by the

ACTION—SCROLL

programmatically

Fling MotionEvent.ACTION—DOWN First ACTION—DOWN followed

MotionEvent.ACTION—MOVE by a bunch of ACTION—MOVE

MotionEvent.ACTION—UP and finally ACTION—UP. All

events generated and fired

programmatically

Double MotionEvent.ACTION—DOWN Similar to click, but fired twice in

Tap MotionEvent.ACTION—UP short intervals programmatically

Prior to delving further into the details of the instant

techniques, note with respect to any computer systems

discussed herein that a system may include server and client

components, connected over a network such that data may

be exchanged between the client and server components.

The client components may include one or more computing

devices including televisions (e.g., smart TVs, Internet-

enabled TVs), computers such as desktops, laptops and

tablet computers, so-called convertible devices (e.g., having
a tablet configuration and laptop configuration), and other
mobile devices including smart phones. These client devices
may employ, as non-limiting examples, operating systems
from Apple Inc. of Cupertino CA, Google Inc. of Mountain
View, CA, or Microsoft Corp. of Redmond, WA. A Unix®
or similar such as Linux® operating system may be used.
These operating systems can execute one or more browsers
such as a browser made by Microsoft or Google or Mozilla
or another browser program that can access web pages and
applications hosted by Internet servers over a network such
as the Internet, a local intranet, or a virtual private network.

As used herein, instructions refer to computer-imple-
mented steps for processing information in the system.
Instructions can be implemented in software, firmware or
hardware, or combinations thereof and include any type of
programmed step undertaken by components of the system;
hence, illustrative components, blocks, modules, circuits,
and steps are sometimes set forth in terms of their function-
ality.

A processor may be any single- or multi-chip processor
that can execute logic by means of various lines such as
address lines, data lines, and control lines and registers and
shift registers. Moreover, any logical blocks, modules, and
circuits described herein can be implemented or performed
with a system processor, a digital signal processor (DSP), a
field programmable gate array (FPGA) or other program-
mable logic device such as an application specific integrated
circuit (ASIC), discrete gate or transistor logic, discrete
hardware components, or any combination thereof designed
to perform the functions described herein. A processor can
also be implemented by a controller or state machine or a
combination of computing devices. Thus, the methods
herein may be implemented as software instructions
executed by a processor, suitably configured application
specific integrated circuits (ASIC) or field programmable
gate array (FPGA) modules, or any other convenient manner
as would be appreciated by those skilled in those art. Where
employed, the software instructions may also be embodied

in a non-transitory device that is being vended and/or

provided that is not a transitory, propagating signal and/or a

signal per se (such as a hard disk drive, solid state drive, CD

ROM or Flash drive). The software code instructions may

also be downloaded over the Internet. Accordingly, it is to be

understood that although a software application for under-

taking present principles may be vended with a device such

as the system 100 described below, such an application may

also be downloaded from a server to a device over a network

such as the Internet.

Software modules and/or applications described by way

of flow charts and/or user interfaces herein can include

various sub-routines, procedures, etc. Without limiting the

disclosure, logic stated to be executed by a particular module

can be redistributed to other software modules and/or com-

bined together in a single module and/or made available in

a shareable library. Also, the user interfaces (UI)/graphical

UIs described herein may be consolidated and/or expanded,

and UI elements may be mixed and matched between UIs.

Logic when implemented in software, can be written in an

appropriate language such as but not limited to hypertext

markup language (HTML)-5, Java®/JavaScript, C# or C++,

and can be stored on or transmitted from a computer-

readable storage medium such as a random access memory

(RAM), read-only memory (ROM), electrically erasable

programmable read-only memory (EEPROM), a hard disk

drive or solid state drive, compact disk read-only memory

(CD-ROM) or other optical disk storage such as digital

versatile disc (DVD), magnetic disk storage or other mag-
netic storage devices including removable thumb drives, etc.

In an example, a processor can access information over its
input lines from data storage, such as the computer readable
storage medium, and/or the processor can access informa-
tion wirelessly from an Internet server by activating a
wireless transceiver to send and receive data. Data typically
is converted from analog signals to digital by circuitry
between the antenna and the registers of the processor when
being received and from digital to analog when being
transmitted. The processor then processes the data through
its shift registers to output calculated data on output lines,
for presentation of the calculated data on the device.

Components included in one embodiment can be used in
other embodiments in any appropriate combination. For
example, any of the various components described herein
and/or depicted in the Figures may be combined, inter-
changed or excluded from other embodiments.

US 12,081,729 B2

9 10

20

25

30

35

40

45

50

55

60

65

“A system having at least one of A, B, and C” (likewise
“a system having at least one of A, B, or C” and “a system
having at least one of A, B, C”) includes systems that have
A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.

The term “circuit” or “circuitry” may be used in the
summary, description, and/or claims. As is well known in the
art, the term “circuitry” includes all levels of available
integration, e.g., from discrete logic circuits to the highest
level of circuit integration such as VLSI, and includes
programmable logic components programmed to perform
the functions of an embodiment as well as general-purpose
or special-purpose processors programmed with instructions
to perform those functions.

Now specifically in reference to FIG. 1, an example block
diagram of an information handling system and/or computer
system 100 is shown that is understood to have a housing for
the components described below. Note that in some embodi-
ments the system 100 may be a desktop computer system,
such as one of the ThinkCentre® or ThinkPad® series of
personal computers sold by Lenovo (US) Inc. of Morrisville,
NC, or a workstation computer, such as the ThinkStation®,
which are sold by Lenovo (US) Inc. of Morrisville, NC;
however, as apparent from the description herein, a client
device, a server or other machine in accordance with present
principles may include other features or only some of the
features of the system 100. Also, the system 100 may be,
e.g., a game console such as XBOX®, and/or the system 100
may include a mobile communication device such as a
mobile telephone, notebook computer, and/or other portable
computerized device.

As shown in FIG. 1, the system 100 may include a
so-called chipset 110. A chipset refers to a group of inte-
grated circuits, or chips, that are designed to work together.
Chipsets are usually marketed as a single product (e.g.,
consider chipsets marketed under the brands INTEL®,
AMD®, etc.).

In the example of FIG. 1, the chipset 110 has a particular
architecture, which may vary to some extent depending on
brand or manufacturer. The architecture of the chipset 110
includes a core and memory control group 120 and an I/O
controller hub 150 that exchange information (e.g., data,
signals, commands, etc.) via, for example, a direct manage-
ment interface or direct media interface (DMI) 142 or a link
controller 144. In the example of FIG. 1, the DMI 142 is a
chip-to-chip interface (sometimes referred to as being a link
between a “northbridge” and a “southbridge”).

The core and memory control group 120 include one or
more processors 122 (e.g., single core or multi-core, etc.)
and a memory controller hub 126 that exchange information
via a front side bus (FSB) 124. As described herein, various
components of the core and memory control group 120 may
be integrated onto a single processor die, for example, to
make a chip that supplants the “northbridge” style architec-
ture.

The memory controller hub 126 interfaces with memory
140. For example, the memory controller hub 126 may
provide support for DDR SDRAM memory (e.g., DDR,
DDR2, DDR3, etc.). In general, the memory 140 is a type of
random-access memory (RAM). It is often referred to as
“system memory.”

The memory controller hub 126 can further include a
low-voltage differential signaling interface (LVDS) 132. The
LVDS 132 may be a so-called LVDS Display Interface
(LDI) for support of a display device 192 (e.g., a CRT, a flat
panel, a projector, a touch-enabled light emitting diode
(LED) display or other video display, etc.). A block 138

includes some examples of technologies that may be sup-

ported via the LVDS interface 132 (e.g., serial digital video,

HDMI/DVI, display port). The memory controller hub 126

also includes one or more PCI-express interfaces (PCI-E)

134, for example, for support of discrete graphics 136.

Discrete graphics using a PCI-E interface has become an

alternative approach to an accelerated graphics port (AGP).

For example, the memory controller hub 126 may include a

16-lane (x16) PCI-E port for an external PCI-E-based graph-

ics card (including, e.g., one of more GPUs). An example

system may include AGP or PCI-E for support of graphics.

In examples in which it is used, the I/O hub controller 150

can include a variety of interfaces. The example of FIG. 1

includes a SATA interface 151, one or more PCI-E interfaces

152 (optionally one or more legacy PCI interfaces), one or

more universal serial bus (USB) interfaces 153, a local area

network (LAN) interface 154 (more generally a network

interface for communication over at least one network such

as the Internet, a WAN, a LAN, a Bluetooth network using

Bluetooth 5.0 communication, etc. under direction of the

processor(s) 122), a general purpose I/O interface (GPIO)

155, a low-pin count (LPC) interface 170, a power manage-

ment interface 161, a clock generator interface 162, an audio

interface 163 (e.g., for speakers 194 to output audio), a total

cost of operation (TCO) interface 164, a system manage-

ment bus interface (e.g., a multi-master serial computer bus

interface) 165, and a serial peripheral flash memory/control-

ler interface (SPI Flash) 166, which, in the example of FIG.

1, includes basic input/output system (BIOS) 168 and boot

code 190. With respect to network connections, the I/O hub

controller 150 may include integrated gigabit Ethernet con-

troller lines multiplexed with a PCI-E interface port. Other

network features may operate independent of a PCI-E inter-

face. Example network connections include Wi-Fi as well as

wide-area networks (WANs) such as 4G and 5G cellular

networks.

The interfaces of the I/O hub controller 150 may provide

for communication with various devices, networks, etc. For

example, where used, the SATA interface 151 provides for

reading, writing or reading and writing information on one

or more drives 180 such as HDDs, SDDs or a combination
thereof, but in any case the drives 180 are understood to be,
e.g., tangible computer readable storage mediums that are
not transitory, propagating signals. The I/O hub controller
150 may also include an advanced host controller interface
(AHCI) to support one or more drives 180. The PCI-E
interface 152 allows for wireless connections 182 to devices,
networks, etc. The USB interface 153 provides for input
devices 184 such as keyboards (KB), mice and various other
devices (e.g., cameras, phones, storage, media players, etc.).

In the example of FIG. 1, the LPC interface 170 provides
for use of one or more ASICs 171, a trusted platform module
(TPM) 172, a super I/O 173, a firmware hub 174, BIOS
support 175 as well as various types of memory 176 such as
ROM 177, Flash 178, and non-volatile RAM (NVRAM)
179. With respect to the TPM 172, this module may be in the
form of a chip that can be used to authenticate software and
hardware devices. For example, a TPM may be capable of
performing platform authentication and may be used to
verify that a system seeking access is the expected system.

The system 100, upon power on, may be configured to
execute boot code 190 for the BIOS 168, as stored within the
SPI Flash 166, and thereafter processes data under the
control of one or more operating systems and application
software (e.g., stored in system memory 140). An operating

US 12,081,729 B2

11 12

5

10

15

20

25

30

35

40

45

50

55

60

65

system may be stored in any of a variety of locations and

accessed, for example, according to instructions of the BIOS

168.

As also shown in FIG. 1, the system 100 may include one

or more sensors 191. The sensors 191 may include, for

example, one or more cameras that gather images and

provide the images and related input to the processor 122.

The camera(s) may be webcams and/or digital cameras, but

may also be thermal imaging cameras, infrared (IR) cam-

eras, three-dimensional (3D) cameras, and/or cameras oth-

erwise integrated into the system 100 and controllable by the

processor 122 to gather still images and/or video. Thus, for

example, one or more forward-facing cameras might be on

a headset being worn by a user so that the system 100 may

execute computer vision (e.g., for 3D real-world location

tracking), and one or more inward-facing cameras might

also be on the headset for eye tracking.

In addition to or in lieu of the foregoing, the sensors 191

may include one or more inertial measurement sensors that

might be included in an inertial measurement unit (IMU) for

location tracking and device orientation identification (e.g.,
dead reckoning for location tracking, orientation identifica-
tion to determine whether to present content in landscape or
portrait orientation). For example, the system 100 may be
embodied in a mobile device and the inertial measurement
sensors may be located on the mobile device to determine
whether the user is holding the system 100 in portrait
orientation where the long axis of the device/display is
oriented vertically or in landscape orientation where the long
axis of the device/display is oriented horizontally. Example
inertial measurement sensors include magnetometers that
sense and/or measure directional movement of the system
100 and provide related input to the processor 122, gyro-
scopes that sense and/or measure the orientation of the
system 100 and provide related input to the processor 122,
and accelerometers that sense acceleration and/or movement
of the system 100 and provide related input to the processor
122.

Additionally, though not shown for simplicity, in some
embodiments the system 100 may include an audio receiver/
microphone that provides input from the microphone to the
processor 122 based on audio that is detected, such as via a
user providing audible input to the microphone as a voice
command as described herein. The system 100 may also
include a global positioning system (GPS) transceiver that is
configured to communicate with at least one satellite to
receive/identify geographic position information and pro-
vide the geographic position information to the processor
122. However, it is to be understood that another suitable
position receiver other than a GPS receiver may be used in
accordance with present principles to determine the location
of the system 100.

It is to be understood that an example client device or
other machine/computer may include fewer or more features
than shown on the system 100 of FIG. 1. In any case, it is
to be understood at least based on the foregoing that the
system 100 is configured to undertake present principles.

Turning now to FIG. 2, example devices are shown
communicating over a network 200 such as the Internet in
accordance with present principles. It is to be understood
that each of the devices described in reference to FIG. 2 may
include at least some of the features, components, and/or
elements of the system 100 described above. Indeed, any of
the devices disclosed herein may include at least some of the
features, components, and/or elements of the system 100
described above.

FIG. 2 shows a notebook computer and/or convertible
computer 202, a desktop computer 204, a wearable device
206 such as a smart watch, a smart television (TV) 208, a
smart phone 210, a tablet computer 212, a headset 216, and
a server 214 such as an Internet server that may provide
cloud storage accessible to the devices 202-212, 216. It is to
be understood that the devices 202-216 may be configured
to communicate with each other over the network 200 to
undertake present principles.

Now describing FIG. 3, it shows a top plan view of an
example headset consistent with present principles, such as
the headset 216 referenced above. The headset 216 may
include a housing 300, at least one processor 302 in the
housing 300, and a non-transparent or transparent “heads
up” display 304 accessible to the at least one processor 302
and coupled to the housing 300. The display 304 may for
example have discrete left and right eye pieces as shown for
presentation of stereoscopic images and/or 3D virtual
images/objects using augmented reality (AR) software, vir-
tual reality (VR) software, and/or mixed reality (MR) soft-
ware.

The headset 216 may also include one or more forward-
facing cameras 306. As shown, the camera 306 may be
mounted on a bridge portion of the display 304 above where
the user’s nose would be so that it may have an outward-
facing field of view similar to that of the user himself or
herself while wearing the headset 216. The camera 306 may
be used for SLAM, computer vision, image registration,
spatial mapping, etc. to track movements of the wearer/
headset 216 within real-world space and map the move-
ments to virtual space. The camera 306 may also be used for
gesture recognition to recognize gestures made by the user
using their hand, arm, etc. consistent with present principles.
However, further note that the camera(s) 306 may be located
at other headset locations as well. Also note that in some
examples, inward-facing cameras 310 may also be mounted
within the headset 216 and oriented to image the user’s eyes
for eye tracking while the user wears the headset 216 (e.g.,
to determine where a user is looking in 3D space to select a
real world or graphical object).

Additionally, the headset 316 may include storage 308
accessible to the processor 302 and coupled to the housing
300, a microphone 312 for detecting audio of the user
speaking voice commands, and still other components not
shown for simplicity such as a network interface for com-
municating over a network such as the Internet and a battery
for powering components of the headset 216 such as the
camera(s) 306. Additionally, note that while the headset 216
is illustrated as a head-circumscribing VR headset, it may
also be established by computerized smart glasses or another
type of headset including other types of AR and MR
headsets. For example, the headset may be established by an
AR headset that may have a transparent display that is able
to present 3D virtual objects/content.

Before describing FIG. 4, it is to be understood that an app
sometimes called App Space/AppSpace below may handle
coordinate conversions and action/event translations
between a headset’s own SDK that might be provided by the
headset’s manufacturer (and that presents 3D content ste-
reoscopically and manages 3D user interactions) and a 2D
app operating on a connected smartphone. Thus, App Space
may make immersive AR/VR/MR interactions possible for
2D apps that have not been configured for 3D space. App
Space may therefore render the 2D apps in a 3D spatial
environment, as well as convert 3D coordinates in the 3D
spatial coordinate system into 2D coordinates in the 2D
coordinate system at runtime (and vice versa). Thus, an app

US 12,081,729 B2

13 14

5

10

15

20

25

30

35

40

45

50

55

60

65

repositioning system is enabled by App Space to place the
2D apps in the 3D spatial environment (e.g., in square
orientation by default as set forth further below). App
Space’s coordinate conversions can be extended to all the
interactions afforded by the underlying 3D headset SDK,
such as raycast, scroll, swipe, long-press, double tap, gesture
and voice.

Now specifically in reference to FIG. 4, it shows a
schematic of example hardware and software architecture.
Thus, a headset 400 is shown and may be similar to the
headset 216 described above. A mobile device 402 is also
shown, where the mobile device 402 may be a smartphone,
tablet computer, laptop computer, or other computing
device.

FIG. 4 also shows that a first app 404—App Space in
non-limiting examples—may execute at the device 402 to
stereoscopically render a surface texture/canvas 406 in 3D
coordinates on the display of the headset 400 and hence to
a wearer of the headset 400. The device 402 may also
execute a second app 408 that is already configured to
present content in 2D coordinates on the display of the
device 402 itself. Thus, the 2D app may be executed for the
device 402 to present a virtual display 410 in, for example,
square orientation in 1920×1920 pixel format by default
once portrait and/or landscape-oriented presentations 412 of
the 2D app have been converted into square orientation by
the device 402 (e.g., by App Space itself, by the guest
operating system such as Google’s Android, by another app
executed by the GOS such as a news app or weather app that
accesses the internet to present visual content and is running
on the device 402, and/or by APIs of Android (an Android
Virtual Display Service)). The content of the virtual display
410 may then act as the base for the content of the surface
texture/canvas 406 that is rendered in 3D, with it being
reiterated that the virtual display 410 may be generated by
the guest operating system (GOS) of the mobile device itself
(e.g., Android). The virtual display 410 (and by extension,
the texture/canvas 406) may also have the same frame rate
(e.g., 60 Hz) as the frame rate for the underlying 2D app
itself as would be used to present the 2D app’s content on the
mobile device’s own display.

Thus, as shown by line 414, the surface texture 406 is
projected into the user’s 3D view while wearing the headset
400 (by App Space 404 itself or after App Space 404
provides the surface texture 406 to the headset’s own 3D
SDK app for 3D rendering (which may be a separate app
than App Space itself)), with App Space 404 initially access-
ing/generating the surface texture/canvas 406 using the
virtual display 410 of the 2D app 408 (as demonstrated by
line 418). Additionally, 3D events and actions taken by the
user in 3D space while interacting with the 3D virtual
environment may be injected into the 2D virtual display
space 410 running on the device 402 in x,y pixel coordinates
once converted into those coordinates by App Space 404, as
demonstrated by line 416. App Space 404 may also intercept
keyboard and other app events executing at the companion
2D app 408 and represent them in the 3D surface texture
406, as represented by line 420. For instance, touches to the
touch-enabled display of the device 402 may be intercepted,
as may scroll events.

Accordingly, as understood herein, in non-limiting
examples App Space 408 may be a 3D app package and
mobile service that bring 2D apps into a 3D space app. The
App Space service may wrap underlying OS Virtual Display
application programming interfaces (APIs). 2D apps may be
opened in the secondary virtual display 410 for which the
surface texture is accessible to App Space in a 3D engine.

App Space may thus render the surface texture 406 in 3D
space and manage the texture 406 with additional user
interface (UI) controls. App Space may detect gaze, raycast,
keyboard, and keypress events from any buttons on the
head-mounted headset 400 itself or even other controller
devices (such as 3D hand-held controllers) via the headset’s
own SDK for 3D rendering. All the detected events may then
be injected to the respective virtual display 410 at the
intercepted coordinates and thus to the underlying 2D app
408.

Also note that, using App Space, multiple 2D apps can be
rendered at the headset 400 concurrently and placed in the
3D space along a 360-degree field of view for the user’s
convenience. Thus, the 2D apps may be assigned a spatial
anchor in 3D coordinates to keep the 2D content virtually
presented in 3D at a particular real world location (for AR)
or virtual world 3D location (for VR).

Thus, in one example embodiment per the schematic of
FIG. 4, the following environment may be used (although
present principles may also be extended to other setups as
well). First, the head mounted display device 400 itself may
be a Lenovo ThinkReality A3 device. The 3D engine that is
used may be the Unity 3D engine. The headset SDK itself
may be the Android SDK and/or Lenovo ThinkReality SDK.
The controlling software may be the app running on the
device 402, such as App Space itself. In the present non-
limiting example, the computing device 402 itself is a
Motorola g100 running a version of the Android operating
system (OS). The virtual display technology that is used may
be Android Virtual Display and/or native APIs from the
underlying OS (e.g., Virtual Display APIs from underlying
OS/Native layer such as Android).

Now in reference to FIG. 5, an example App Space canvas
500 is shown that may be similar to the surface texture/
canvas 406 described above. Content from the 2D app has
been omitted for simplicity but may be located in a square-
shaped area 502 of the canvas 500 as presented stereoscopi-
cally by App Space and/or the native 3D software. The area
502 may establish a square orientation for the content
consistent with present principles, and as such may be
established by equal height and width. For example, the
square orientation may be established by a 1920×1920
resolution at 520 dots per inch (dpi) in certain specific
examples. Note that here the canvas 500 also establishes a
graphical user interface (GUI) and that, as part of this GUI,
an indication 504 includes a non-text icon and text indicat-
ing that the mobile device/headset is currently operating in
square mode to present content in square orientation at the
headset.

Turning to FIG. 6, suppose that at runtime and while the
mobile device is presenting content at the headset in square
orientation according to the square mode, a user provides a
command that a 2D app that only presents content in
landscape orientation (regardless of mobile device orienta-
tion) present a 3D version of its content in 3D at the headset.
Or as another example, suppose that a user has locked the 2D
application into landscape orientation so that orientation
does not change at the mobile device to portrait orientation
or any other type of orientation, regardless of device orien-
tation changes. Or as yet a third example, suppose a user has
entered full-screen presentation of content from a 2D app
such as YouTube that results in the app presenting content in
landscape orientation and full screen at the mobile device’s
own display and maintains landscape orientation so long as
the video content is presented full screen in this locked
landscape orientation. In any of these situations, responsive
to the mobile device switching to landscape orientation for

US 12,081,729 B2

15 16

5

10

15

20

25

30

35

40

45

50

55

60

65

presentation of the corresponding 2D content, the mobile
device may also present the stereoscopic 3D version of the
same content at the headset display in landscape orientation
as well (rather than square orientation). This may be done
since the headset has a relatively wide horizontal field of
view (FOV) and may be particularly suited for presenting
landscape-oriented content but not necessarily portrait-ori-
ented content (which may appear unduly small or distorted).

Then when the user opens another 2D app that does not
always present content in landscape orientation, unlocks the
2D app from presenting content in landscape orientation, or
exits the full-screen mode in which landscape orientation is
used, the mobile device may provide the virtual display in
square orientation again for presentation in 3D at the headset
display.

With the foregoing in mind, FIG. 6 shows a canvas 600
generated from a virtual display with landscape-oriented
content. The canvas 600 may also be presented in 3D
stereoscopically at the headset by App Space and/or the
native 3D software just as with the canvas 500. Thus, note
that while content from the 2D app has been omitted for
simplicity, the content is located in a landscape-oriented area
602 of the canvas 600 as presented stereoscopically. As
shown in FIG. 6, the area 602 may have a longer width than
height as presented to the user at the headset. For example,
the landscape orientation may be established by a 1920×
1080 resolution. Note that here the canvas 600 also estab-
lishes a GUI and that, as part of this GUI, an indication 604
includes a non-text icon and text indicating that the mobile
device/headset is currently operating in landscape mode to
present content in landscape orientation at the headset.

Turning now to FIG. 7, note that in addition to or in lieu
of the mobile device autonomously switching presentation
of 3D content at the headset display from square orientation
to landscape orientation, in some examples responsive to the
opening of the landscape-only app, the locking of landscape
orientation, or the entering of a full-screen mode, the mobile
device may instead give the end-user the option to choose
whether to switch from square orientation to landscape
orientation. Accordingly, a GUI 700 may be presented in 2D
at the mobile device display and/or stereoscopically in 3D at
the headset display.

As shown in FIG. 7, the GUI 700 includes a note 702 that
the user is trying to, in the present example, enter full-screen
content presentation in landscape orientation on the mobile
device. As also shown, the GUI 700 may include a prompt
704 asking the end-user whether the user wishes to switch
3D content presentation of the same content from the 2D app
from 3D square orientation to 3D landscape orientation for
a better viewing experience at the headset. The user may
command the mobile device to make the switch by selecting
the “yes” selector 706, or the user may choose to remain in
square mode/orientation by selecting the “no” selector 708.

Moving on from FIG. 7, this detailed description also
recognizes that in some instances, such as where portrait-
oriented content is presented in square orientation or where
content has been hard-coded at the 2D app for 2D pixel
coordinates, the content may appear stretched in the hori-
zontal dimension when presented in 3D square orientation at
the headset’s display. In such an instance, the App Space
developers or a third party developing a plugin/application
programming interface (API) for App Space to modify its
functionality may provide, as part of App Space or in
cloud/server storage accessible to the mobile device, a list of
verified apps that are certified/tested to not stretch while
presented in square orientation. The verified list may there-
fore specify which apps the mobile device can open in

square orientation with content integrity maintained, and in
various specific examples only those apps may be get listed
on the headset display’s own home screen/main launcher for
providing the launch command from the headset (even
though launch/execution may still occur at the connected
mobile device).

For other apps that are not listed in the list, when the user
attempts to launch one of those apps the GUI 800 of FIG. 8
may be presented so that the end-user can choose whether to
present potentially stretched content from that app. Accord-
ingly, as shown in FIG. 8 that GUI 800 may include a
disclaimer 802 that the app the user is trying to launch is an
app that has not been verified for presenting non-stretched
content in square mode and that the content/images from the
app may look stretched or otherwise distorted.

But the GUI 800 may also include a prompt 804 asking
whether the user would like to launch the 2D app anyway for
App Space to then convert its content into 3D content for
stereoscopic presentation at the headset display. The user
may then command the mobile device to launch the app and
present the 3D content anyway by selecting the “yes”
selector 806, or the user may command the mobile device to
decline to launch the app/present the underlying content in
3D by selecting the “no” selector 808. And note for com-
pleteness that the GUI 800 itself may be presented in 2D at
the mobile device display and/or may be presented stereo-
scopically in 3D at the headset display.

Referring now to FIG. 9, it shows example overall logic
that may be executed consistent with present principles by a
device such as the system 100, a mobile device, and/or a
coordinating server in any appropriate combination. Begin-
ning at block 900, the mobile device may execute a first app
(e.g., App Space) at the mobile device, where the first app
may be configured for interfacing presentation of content
between 2D space and 3D space to thus present 2D content
from a 2D app (as based in pixel coordinates) stereoscopi-
cally in 3D (as based in 3D texture coordinates established
by e.g., bitmap images). The logic may then move to block
902.

At block 902 the device may access configuration data
(e.g., the verified list described above in reference to FIG. 8)
indicating that content from various 2D apps are approved
for presentation in square orientation to then determine
whether a user-selected 2D app is indicated in the configu-
ration data (e.g., on the verified list) for apps verified to not
have their content stretched when presented in square ori-
entation at the headset. For example, the configuration data
(such as the verified list) may form part of a plugin for the
first app (e.g., App Space), or may be included in the main
body of App Space itself.

Thereafter the logic may proceed to block 904 where,
assuming the 2D app is indicated in the configuration data as
being verified for square orientation presentation or assum-
ing that the user has provided input through a GUI like the
GUI 800 to present the 2D app’s content in 3D anyway, the
device may request a virtual display in square orientation for
the 2D content from the 2D app. In certain specific
examples, the first app itself (e.g., App Space) may provide
the request to a second app such as the mobile device’s own
GOS (e.g., Android) or even the individual 2D app itself that
might access the Internet to present visual content (e.g., a
news, email app, etc.). In either case, note that the second
app may already be configured for providing virtual displays
in square orientation, 1920×1920 resolution at 520 dpi or
otherwise.

Thereafter, the logic may proceed to block 906 where the
device may receive, via the first app and from the second

US 12,081,729 B2

17 18

5

10

15

20

25

30

35

40

45

50

55

60

65

app, the virtual display in square orientation. The logic may

then proceed to block 908 where the device may use the first

app to stereoscopically present, in 3D space on the display

of the headset, the virtual display in the square orientation.

After block 908, the logic may proceed to block 910. At

block 910 the device may receive user input to present

content from a third app (a 2D app different from the first

app/App Space and different from the second app/GOS) in

landscape mode. Again this may include user input to enter

a full-screen mode, user input to launch an app that only

presents content in landscape orientation, and/or user input

to lock the content orientation into landscape orientation so

that the content orientation does not change with mobile

device orientation changes.

Then, at decision diamond 912, the device may determine

based on the user input whether full-screen landscape ori-

entation has in fact been selected for presenting 2D content
in 2D at the mobile device’s display. Additionally or alter-
natively, at diamond 912 the device may determine whether
the user has provided a command to launch an app that
presents content only in landscape orientation or has pro-
vided a command to lock content orientation for a 2D app
into landscape orientation.

A negative determination at diamond 912 may cause the
logic to proceed back to block 908 to continue presenting
content in square orientation. However, an affirmative deter-
mination at diamond 912 may instead cause the logic to
proceed to block 914. At block 914, based on the user input,
the device may request a virtual display in a landscape
orientation from the second app. In response, at block 916
the device may receive, via the first app and from the second
app, the virtual display in the landscape orientation. There-
after, the logic may proceed to block 918 where the device
may use the first app to present, in 3D space on the display
of the headset, the virtual display in the landscape orienta-
tion.

Content may continue to be presented at the headset in
landscape orientation at least until full-screen mode is exited
at the mobile device, the landscape-only app is closed or
exited form active presentation, and/or landscape mode for
the given 2D app is unlocked. Once any of those things
happen, the first app may again request square orientation
content from the second app for presentation at the headset
accordingly.

It may now be appreciated that present principles provide
for an improved computer-based user interface that
increases the functionality and ease of use of the devices
disclosed herein. The disclosed concepts are rooted in com-
puter technology for computers to carry out their functions.

It is to be understood that whilst present principals have
been described with reference to some example embodi-
ments, these are not intended to be limiting, and that various
alternative arrangements may be used to implement the
subject matter claimed herein. Components included in one
embodiment can be used in other embodiments in any
appropriate combination. For example, any of the various
components described herein and/or depicted in the Figures
may be combined, interchanged or excluded from other
embodiments.

What is claimed is:
1. At least a first device, comprising:
at least one processor; and
storage accessible to the at least one processor and

comprising instructions executable by the at least one
processor to:

execute a first application (app) at the first device, the first

app configured for interfacing presentation of content

between two dimensional (2D) space and three dimen-

sional (3D) space;

request, from a second app, a virtual display in a square

orientation;

receive, via the first app, the virtual display in the square

orientation; and

use the first app to present, in 3D space on a display of a

headset, the virtual display in the square orientation;

wherein the square orientation is established by a 1920×
1920 resolution at 520 dots per inch (dpi).

2. The at least first device of claim 1, wherein the second

app is a guest operating system.

3. The at least first device of claim 1, wherein the second

app is a 2D app that accesses the Internet to present visual

content.

4. The at least first device of claim 1, wherein the first app

issues the request.

5. The at least first device of claim 4, wherein the first app

issues the request based on the first app accessing configu-
ration data indicating that content from a third app is
approved for presentation in square orientation.

6. The at least first device of claim 5, wherein the third app
is different from the second app.

7. The at least first device of claim 5, wherein the
configuration data forms part of a plugin for the first app.

8. The at least first device of claim 1, wherein the
instructions are executable to:

receive user input to present content from a third app in
a landscape orientation;

based on the user input, request, from the second app, a
virtual display in the landscape orientation;

receive, via the first app, the virtual display in the land-
scape orientation; and

use the first app to present, in 3D space on the display of
the headset, the virtual display in the landscape orien-
tation.

9. The at least first device of claim 8, wherein the user
input comprises input to present content from the third app
full-screen.

10. The at least first device of claim 1, comprising the
headset.

11. The at least first device of claim 10, comprising a
mobile device, the mobile device executing the first and
second apps, the mobile device being different from the
headset.

12. The at least first device of claim 1, wherein the first
app presents the virtual display stereoscopically.

13. The at least first device of claim 1, wherein the
instructions are executable to:

present, with the virtual display in the square orientation,
an indication that content is being presented in the
square orientation, the indication being different from
the square orientation.

14. A method, comprising:
executing a first application (app) at a first device, the first

app configured for presenting content stereoscopically
in three dimensional (3D) space using a headset;

using the first app to request, from a second app, a virtual
display in a square orientation;

receiving, at the first app and from the second app, the
virtual display in the square orientation; and

using the first app to present, in 3D space on a display of
the headset, the virtual display in the square orienta-
tion;

US 12,081,729 B2

19 20

5

10

15

20

25

30

35

40

45

50

55

60

65

wherein the virtual display is presented in the square
orientation at 520 dots per inch.

15. The method of claim 14, wherein the second app is a
guest operating system of a mobile device.

16. The method of claim 14, wherein the square orienta-
tion is established by a 1920×1920 resolution.

17. The method of claim 14, comprising:
using the first app to issue the request.
18. The method of claim 14, wherein the square orienta-

tion is established by a resolution of equal height and width.
19. The method of claim 14, comprising:
presenting, with the virtual display in the square orienta-

tion, an indication that content is being presented in the
square orientation, the indication being different and
apart from the square orientation.

20. At least one computer readable storage medium
(CRSM) that is not a transitory signal, the at least one
computer readable storage medium comprising instructions
executable by at least one processor to:

execute a first application (app) at a first device, the first
app configured for presenting content stereoscopically
in three dimensional (3D) space using a headset;

use the first app to request, from a second app, a virtual
display in a square orientation;

receive, from the second app, the virtual display in the
square orientation; and

use the first app to present, in 3D space on a display of the
headset, the virtual display in the square orientation;

wherein the square orientation is established by a 1920×
1920 resolution at 520 dots per inch (dpi).

∗ ∗ ∗ ∗ ∗

US 12,081,729 B2

21 22

5

10

15

20

25

30

	E_Grant_Covers_All_508 5
	E_Grant_Covers_All_508 6

		USPTO Director
	2024-08-30T20:34:20-0400
	United States Patent and Trademark Office
	United States Patent and Trademark Office
	Digitally Sealed

